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Abstract
We apply the method of algebraic deformation to N-tuple of algebraic K3
surfaces. When N = 3, we show that the deformed triplet of algebraic
K3 surfaces exhibits a deformed hyper-Kähler structure. The deformation
moduli space of this family of noncommutative K3 surfaces turns out to be of
dimension 57, which is three times that of complex deformations of algebraic
K3 surfaces.

PACS numbers: 02.40.Gh, 02.40.Re, 11.25.−w

1. Introduction

Noncommutative geometry [1] is now an integral part of string/M-theory [2]. Since the work
of Connes et al [3] connecting the noncommutative torus [4, 5] and the T-duality in the M-
theory context, various properties of noncommutative space itself such as noncommutative tori
and their varieties have been a subject of intensive study [2, 6–8]. However, more interesting
and complicated structures such as noncommutative orbifolds and noncommutative Calabi–
Yau (CY) manifolds have been studied far less [9–14]. Also, not much is known about
noncommutative spaces with complex structures. Only recently, have noncommutative tori
with complex structures been studied [15–17].

In investigating the properties of noncommutative space with complex structure, the
algebraic geometry approach seems to be a good fit. In [18], Berenstein et al initiated
an algebraic geometry approach to noncommutative moduli space. Then applying this
technique, Berenstein and Leigh [9] studied noncommutative CY threefolds; a toroidal orbifold
T 6/Z2 × Z2 and an orbifold of the quintic in CP

4, each with discrete torsion [19–23]. In
their first example, they deformed the covering space in such a way that the centre of the
deformed algebra corresponded to the commutative classical space, a CY threefold. In that
process, the complex structure of the centre was also deformed as a consequence of the
covering space deformation, and some part of the moduli space of complex deformations was
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indeed recovered. They could also explain the fractionation of branes at singularities from a
noncommutative geometric viewpoint in the presence of discrete torsion. There, in order to
be compatible with Z2 discrete torsion, the three holomorphic coordinates yi which are the
defining variables of the three elliptic curves of T 6, started to anticommute with each other.

In the commutative K3 case, the moduli space for the K3 space itself is known already
(see for instance [24]), and even the moduli space for the bundles on K3 surfaces has been
studied [25]. In [10], algebraic deformation of K3 surfaces has been studied in the case
of the orbifold T 4/Z2. There, the work was carried out by considering deformation of the
invariants of the K3 itself, unlike the deformation of the variables of the covering space as
in [9].

In [26], this method was applied for the algebraic K3 case. Classically, the complete family
of complex deformations of K3 surfaces is of dimension 20 inside which that of the algebraic
K3 surfaces is of dimension 19 [24]. In [26], a 19-dimensional family of the noncommutative
deformations of the general algebraic K3 surfaces was considered. The construction was
similar to the Connes–Lott ‘two-point space’ construction of the standard model [27]. It was
done by deforming a pair of algebraic K3 surfaces and was called ‘two-point deformation’.
It was further generalized to the N-point case by considering the deformation of N-tuple of
algebraic K3 surfaces. In the N-point deformation, the dimension of deformation moduli
turned out to be 19N(N − 1)/2 [26].

In this paper, we examine the N-point deformation method in the N = 3 case. Considering
a 57-dimensional family of the noncommutative K3 surfaces, we show that the N = 3 case
corresponds to a noncommutative deformation of the hyper-Kähler structure of K3 surfaces.

In section 2, we explain the method of N-point deformation for the algebraic K3 surfaces
in detail for N = 2. In section 3, we show that for N = 3 this family of deformed
noncommutative K3 surfaces exhibits deformed hyper-Kähler structures. In section 4, we give
another interpretation in terms of Clifford algebras. In section 5, we conclude with a discussion.

2. Two-point deformation

In this section, we explain the method of N-point deformation [26] of algebraic K3
surfaces, specifically for the N = 2 case, by considering the ‘two-point space’ version of
noncommutative deformation for a pair of algebraic K3 surfaces.

The N-point method was carried out by a direct extension of the algebraic deformation
done for the T 4/Z2 case [10]. General algebraic K3 surfaces are given by the following form
and with a point added at infinity:

y2 = f (x1, x2). (1)

Here f is a function with total degree 6 in x1, x2.
Now, we compare this with the Kummer surface, the orbifold of T 4/Z2 case [10]. There

T 4 was considered as the product of two elliptic curves, each given in the Weierstrass form

y2
i = xi(xi − 1)(xi − ai) (2)

with a point added at infinity for i = 1, 2. By the following change of variables, the point at
infinity is brought to a finite point:

yi −→ y ′
i = yi

x2
i

xi −→ x ′
i = 1

xi

. (3)

For algebraic K3 surfaces, we first consider a function with total degree 6 in complex
variables u, v,w, for instance

F(u, v,w) = u2v3w + u4v2.
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In a patch where the point at infinity of w can be brought to a finite point, dividing both sides
by w6 the above expression can be rewritten as

f (x1, x2) = x2
1x

3
2 + x4

1x
2
2

where x1 = u
w
, x2 = v

w
. The corresponding algebraic K3 surface is given by

y2 = f (x1, x2) = x2
1x

3
2 + x4

1x
2
2 . (4)

Similarly, in a patch where the point at infinity of u can be brought to a finite point, we can
re-express it as

y ′2 = f ′(x ′
1, x

′
2) = x ′3

1 x ′
2 + x ′2

1 (5)

where x ′
1 = v

u
= x2

x1
, x ′

2 = w
u

= 1
x1

. Thus, in the case of the general algebraic K3, a point at
infinity in one patch can be brought to a finite point in another patch by the following change
of variables

y −→ y ′ = y

x3
1

(6)

x1 −→ x ′
1 = x2

x1
x2 −→ x ′

2 = 1

x1
. (7)

We now consider a noncommutative deformation of algebraic K3 surfaces. Following
the same reasoning as in [10], we consider two commuting complex variables x1, x2 and two
noncommuting variables t1, t2 such that

t2
1 = h1(x1, x2) t2

2 = h2(x1, x2) (8)

where h1, h2 are commuting functions of total degree 6 in x1, x2. To be consistent with the
condition that t2

1 , t2
2 belong to the centre, one can allow the following deformation for t1, t2:

t1t2 + t2t1 = P(x1, x2). (9)

Here the right-hand side should be a polynomial and free of poles in each patch. Thus, under
the change of variables (7)

x1 −→ x ′
1 = x2

x1
x2 −→ x ′

2 = 1

x1

t should be changed into

ti −→ t ′i = ti

x3
1

for i = 1, 2. (10)

This is due to the fact that t transform just like y in (6). Therefore, P transforms as

P(x1, x2) −→ x6
1P

′
(

x2

x1
,

1

x1

)
. (11)

This implies that P ′ should be of total degree 6 in x ′
1, x

′
2, at most. Interchanging the role of P

and P ′ one can see that P should also be of total degree 6 in x1, x2.
The above structure was understood as follows. If condition (9) is not imposed, then there

exist two independent commutative K3 surfaces. Once condition (9) is imposed, these two
commutative K3 surfaces become a combined surface in which the two K3 surfaces intertwine
with each other everywhere on their surfaces and become fuzzy. This seems to be similar
to the two-point space version of the Connes–Lott model [27]. In the Connes–Lott model,
every point of the space becomes fuzzy due to the one-to-two correspondence at each point
in the space, where the two corresponding points at each classical location are fixed. On the
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other hand, the present case is similar to the relation between position x and momentum p in
quantum mechanics at every point in the space. However, since the two copies of the classical
space are combined to become a noncommutative space just like the Connes–Lott model, this
construction was also called two-point deformation though its nature is a little different from
that of Connes–Lott.

To count the dimension of the deformation moduli, one simply needs to count the
dimension of the polynomials of degree 6 in three variables from (11) up to constant modulo
projective linear transformations of three variables. Namely, 28 − 1 − 8 = 19, where 28 is the
dimension of polynomials of degree 6 in three variables and 1 and 8 correspond to a constant
and PGL(3, C), respectively.

3. Deformed hyper-Kähler structure

In this section, we consider the N-point deformation for N = 3. Following the method of
two-point deformation in the previous section, we consider commuting variables x1, x2 and
three noncommuting variables t1, t2, t3. Here, each t2

i should belong to the centre and be a
function of total degree 6 in x1, x2, such that

t2
1 = h1(x1, x2) t2

2 = h2(x1, x2) t2
3 = h3(x1, x2) (12)

where h1, h2, h3 are commuting functions of total degree 6 in x1, x2. To be consistent with
the condition that t2

i belong to the centre, we can allow the following deformation for ti :

ti tj + tj ti = Pij (x1, x2) i, j = 1, 2, 3 (i �= j). (13)

Here Pij should be polynomials and free of poles in each patch. Thus, when we change from
one patch to another, for instance under the change of variables (7) in the previous section,

x1 −→ x ′
1 = x2

x1
x2 −→ x ′

2 = 1

x1

ti should be changed into

ti −→ t ′i = ti

x3
1

for i = 1, 2, 3. (14)

This is due to the fact that ti transform just like y in (6) in the previous section under the above
change of patches. Therefore, under the above change of variables Pij transform as

Pij (x1, x2) −→ x6
1P

′
ij

(
x2

x1
,

1

x1

)
. (15)

By the same reasoning as in the two-point deformation case, one can see that each Pij is
of total degree 6 in x1, x2, at most. It is not difficult to show that one can also get the
same conclusion for different changes of patches. Here, conditions (18) for t2

i represent
the different complex deformations of K3 surfaces, and its moduli space is of complex
dimension 57. Condition (19) provides a characteristic of noncommutativity for otherwise
three separate commutative (algebraic) K3 surfaces given by (18). Since each Pij is a
polynomial of total degree 6 in x1, x2, condition (19) makes the moduli space of the above
noncommutatively deformed K3 surfaces be of complex dimension 57, the same as the moduli
dimension of complex deformations that we explained above and this is exactly three times
that of the commutative algebraic K3 surfaces. This is different from the commutative hyper-
Kähler K3 case, in which the moduli space is of real dimension 58 as we will discuss below.
Then, what is the relationship between our newly constructed noncommutative K3 surface and
the hyper-Kähler structure of commutative K3 surfaces?
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Before we address this question, we first review the property of the moduli space M of
Ricci-flat metrics on a K3 surface S. If a given metric g satisfies g(Jv, Jw) = g(v,w) for any
tangent vector v,w, then we say that the metric g is compatible with the complex structure J .
If the two-form �(·, ·) = g(J ·, ·) is closed, then it is called a Kähler metric and � is called a
Kähler form. Any given Ricci-flat metric g induces a Hodge ∗ operator on H 2(S, R) ∼= R

3,19

by which H 2(S, R) can be decomposed as a direct sum of two eigenspaces, self-dual part
(eigenvalue 1) of dimension 3 and anti-self-dual part (eigenvalue −1) of dimension 19. The
self-dual part is positive definite with the integration on S after wedge product, so that the
moduli space of Ricci-flat metrics is locally isomorphic to (O(3, 19)/O(3) × O(19)) × R+.
This is because H 2(S, R) has the intersection form (3,19) and the parameter of the scaling of
the metric is R+. So the real dimension of M is 3 × 19 + 1 = 58.

We can also understand this in a different setting. Let N = {(J,�) | � is a Kähler form
in the K3 surface with the complex structure J }. Then the real dimension of N is equal to the
real dimension of the moduli space of complex structures plus the real dimension of Kähler
forms, which is 40 + 20 = 60. We can define a map � from N to M as follows:

�((J,�)) = g such that g(·, ·) = �(·, J ·).
Then it is onto but not one-to-one. The inverse image of g by � is P

1. So,

dimR M = dimR N − 2 = 60 − 2 = 58.

Now, we define the hyper-Kähler structure on S. In the first setting, for the given Ricci-
flat metric g, the self-dual part �+ is a three-dimensional real vector space consisting of
vectors whose self-intersection is positive. With any compatible complex structure J to g, we
associate � which is a vector in �+ and is a (1, 1) form. Then real (2, 0) and (0, 2) forms in
�+ are exactly orthogonal to �. Different compatible structures J to g correspond to different
unit vectors in �+, and they form S2 isomorphic to P

1, inverse of �−1(g). Here we choose
three orthogonal unit vectors �1,�2,�3 in �+ such that the corresponding complex structures
J1, J2, J3 satisfy the relation JiJj = εijkJk for i, j, k = 1, 2, 3. This is called a hyper-Kähler
structure on S.

Now we return to our question of the connection between our N = 3 construction and
the hyper-Kähler structure of K3 surfaces. When Pij all vanish in (19), the ti (i = 1, 2, 3)

in (19) satisfy the same relation as the complex structures Ji (i = 1, 2, 3) in the case of the
commutative hyper-Kähler K3 surfaces, and ti actually correspond to the complex structures
of the commutative K3 surfaces. Here, if we consider just one of the ti and disregard the other
two ti for a moment, then the ti represents a family of commutative algebraic K3 surfaces
whose moduli dimension is of complex dimension 19. On the other hand, when all three ti
are present but all the Pij vanish in (19), then the ti are not independent of each other like
the Ji of the commutative hyper-Kähler K3 case. However, when all Pij do not vanish and
are independent of each other, ti become all independent and the moduli dimension becomes
three times larger than that of each piece represented by one of the ti . Thus, the space becomes
noncommutative under condition (19) provided that all Pij do not vanish and are independent
of each other. Therefore, we can regard our new noncommutative K3 surfaces as deformed
hyper-Kähler K3 surfaces, since ti satisfying (18) and (19) with vanishing Pij do admit the
hyper-Kähler structure [24, 28].

This we can see by redefining tj (j = 1, 2, 3) as tj = i
√

hj (x1, x2)t̂j for j = 1, 2, 3.

Then, in terms of t̂j , (18) and (19) become

t̂2
1 = −1 t̂2

2 = −1 t̂2
3 = −1 (16)

and

t̂i t̂j + t̂j t̂i = −Pij (x1, x2)/
√

hihj i, j = 1, 2, 3 (i �= j). (17)
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Recall that the quaternion structure of the hyper-Kähler structure of K3 surfaces can be
expressed as

Ji
2 = −1 JiJj = εijkJk i, j = 1, 2, 3

and thus

JiJj + JjJi = 0.

Comparing with this we see that newly defined {t̂j } exhibit a deformed hyper-Kähler structure
for K3 surfaces.

The above construction of noncommutative hyper-Kähler K3 surface is a little different
from that defined in [28, 29] whose Ti (i = 1, 2, 3) operators perform a similar role to our
ti . In [28, 29], the commutation relation among Ti was not deformed, it remains the same as
that of Ji in the commutative hyper-Kähler K3 case. However, in their definition there exist
extra anticommuting operators which provide holomorphic structures, and we wonder whether
these additional anticommuting operators could make the two constructions equivalent.

4. K3 surface embedded in a Clifford variety

We now give another interpretation of these phenomena in the context of Clifford algebras.
The equations for ti are

t2
1 = h1(x1, x2) t2

2 = h2(x1, x2) t2
3 = h3(x1, x2) (18)

ti tj + tj ti = Pij (x1, x2) i, j = 1, 2, 3 (i �= j). (19)

Here we can understand ti as the homogeneous variables of tangent space of P 2 and those
hi and Pij make a metric on P 2. Locally, these are just Clifford algebras as shown in the
previous section. We obtain a variety defined with those hi and Pij in a weighted projective
variety P 2(1, 1, 1) × P 2(3, 3, 3). The first P 2(1, 1, 1) represents the P 2(u, v,w), which is
the base space. (We used x1, x2 in a local chart.) The next P 2(3, 3, 3) represents the
P 2(t1, t2, t3) of the tangent space of P 2. So, the above equations define a subvariety in the
weighted projected variety, which might be called a Clifford variety of P 2. It is interesting to
see that three K3 surfaces define a K3 surface in a Clifford variety.

5. Discussion

We deformed the algebraic and hyper-Kähler K3 surfaces in both noncommutative and complex
directions. In the deformation of hyper-Kähler structure, we introduced three noncommuting
variables which correspond to three copies of commutative K3 surfaces and at the same time
represent three different complex structures of K3 surfaces. Before deformation, we make
these three variables have the same relation as the three complex structures Ji (i = 1, 2, 3) of
hyper-Kähler K3 in which Ji possess the quaternionic structure and anticommute with each
other. Here, one may wonder whether the deformation condition (19) could also be satisfied
with commuting variables when the polynomials Pij do not vanish. That is possible, but the
consequences are totally different depending on whether these variables are commuting or
noncommuting ones. When they are commuting variables, Pij in (19) are not independent and
they can all be expressed in terms of hi (i = 1, 2, 3) functions in (18). Thus, there are only
complex deformations and no noncommutative deformations. On the other hand, when these
variables are noncommuting ones and Pij are nonvanishing, then Pij in (19) are all independent
of hi functions. Hence, we have both complex deformations from hi and noncommutative
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deformations from Pij . And since our construction is a deformation from the commutative
hyper-Kähler structure of K3 surfaces in the noncommutative direction, we end up with a
noncommutative hyper-Kähler structure for K3 surfaces.

About the moduli dimension of our noncommutative hyper-Kähler structures for K3, we
still do not have a clear understanding of how ours is related to the commutative one. In the
commutative case, it has real moduli dimension 58 as we explained before. On the other hand,
our noncommutative hyper-Kähler structure has complex moduli dimension 57. Apparently,
ours is exactly twice that of the commutative one, once we disregard the parameter of overall
scaling in the commutative case. Thus, if we complexify the metric moduli, then it seems
that we can fill the gap. In the construction of hyper-Kähler K3 in [28, 29], there exist a
set of anticommuting operators providing the complexification. However, we do not have
the corresponding variables in our construction as we mentioned briefly at the end of the last
section. Since the commutation relation of the operators representing the complex structures
in those works is not deformed, unlike in our construction, there is some possibility that our
noncommuting variables may also possess the property of these anticommuting operators in
[28, 29]. We will leave this investigation for our future work.
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